2
#1 from tensorflow.keras.datasets import fashion_mnist (x_train, y_train), (x_test, y_test) = fashion_mnist.load_data() x_train,x_test=x_train/255.0,x_test/255.0 #2 import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) #3 lr_schedule = tf.keras.callbacks.LearningRateScheduler( lambda epoch: 1e-3 * 10**(epoch / 20)) history = model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test), ...