3
#1.load amd preprocess the CIFAR-10 dataset
import numpy as np
import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
from sklearn.metrics import accuracy_score, precision_score, recall_score
# Load the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# Normalize pixel values to be between 0 and 1
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0
# convert class vectors to binary class matrices(one-hot encoding)
y_train = tf.keras.utils.to_categorical(y_train,num_classes=10)
y_test = tf.keras.utils.to_categorical(y_test,num_classes=10)
#2.define a deeper cnn model
#define the cnn model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))
#compaile the model
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
#3.evaluate the model using precision,recall, and confusion matrix:
#train the model
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_test, y_test))
#evaluate the model
y_pred = model.predict(x_test)
y_pred_classes = np.argmax(y_pred, axis=1)
y_test_classes = np.argmax(y_test, axis=1)
#calculate precision and recall
precision = precision_score(y_test_classes, y_pred_classes, average='macro')
recall = recall_score(y_test_classes, y_pred_classes, average='macro')
print('Precision:', precision)
print('Recall:', recall)
Comments
Post a Comment