2
#1
from tensorflow.keras.datasets import fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_train,x_test=x_train/255.0,x_test/255.0
#2
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
#3
lr_schedule = tf.keras.callbacks.LearningRateScheduler(
lambda epoch: 1e-3 * 10**(epoch / 20))
history = model.fit(x_train, y_train, epochs=10,
validation_data=(x_test, y_test),
callbacks=[lr_schedule])
#4
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'],label='Training Accuracy')
plt.plot(history.history['val_accuracy'],label='Validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
Comments
Post a Comment